International Journal of Advanced Engineering, Management and Science (IJAEMS)

Infogain Publication (Infogainpublication.com)

[Vol-2, Issue-7, July- 2016]
ISSN : 2454-1311

New Approach of Inter-Cross: An Efficient

Multilevel Cache Management Policy
MS Surbhi R.Khare Mr. Ritesh Shrivastava

'CT Dept. PIET Nagpur, India
“CSE Dept. ACET Nagpur, India

Abstract— Cache performance has been critical for large
scale systems. Until now, many multilevel cache
management policies LRU-K, PROMOTE, DEMOTE
have been developed but still there is performdssee.
Many approaches have been proposed to reduce the ga
between different levels such as hint-based muile
cache. Some approaches like demote or promote are
based on the latest cache history information, Whi
inadequate for applications where there are regular
demote and promote operations occur. The major
drawback of these policies is selecting a victim.this
paper, the new multilevel cache replacement paatied
Inter-cross is implemented to improve the cache
performance of a system. The decision of promatiwh
demotion is based on the block's previous N-step
promotion or demotion history and the size anddest
time of the block in the cache. Comparative stugtyben
inter-cross and existing multilevel policies shothst,
existing keeps track on last K references of theckbl
within a last cache level, while inter-cross keépgk of

the information of the last K movements of bloak®ig

all the cache levels. Inter-cross algorithms aresigaed
that can efficiently describe the activeness of blogks

in any cache level. Experimental results show ther-
cross achieves better performance compared toiegist
multilevel cache replacement policies such as LRU-K
PROMOTE, and DEMOTE under different workloads.
Keywords— Multilevel cache, hints, Regency, demote,
promote, cache performance.

l. INTRODUCTION
Memory today is very inexpensive, and becoming
increasingly large. Despite the principle of logglia
cache will not function effectively if its size imany
orders of magnitude smaller than the memory it is
buffering [1]. A natural solution to this problers to
make caches larger as well, perhaps on the order of
megabytes instead of kilobytes. Such a cache maplee
to hold a sufficient range of information, but gotlarge
to be managed effectively and accessed quickly.ndie
need a cache for the cache.
This trend leads to the use of multilevel cachesmall

Wwww.ijaems.com

cache on the processor chip, and a larger cacha on
separate chip nearby. These are often called thel Lle
(L1) cache and the Level 2 (L2) cache, respectively
Level 1(L1) cache is present in the processor dred t
Level 2 (L2) cache is present is present on the
motherboard.

The performance benefit of cache plays significatd in
calculating overall system performance [2]. Thogghhe
memories are more expensive than mass storage memor
like hard disk, most computing devices are equippith

a cache [3]. Caching is one of the most importagthods

to bridge the gap between different systems acspmmssd,
and it is widely used in database management sgsam
storing frequently accessed queries, file systems f
storing file allocation table (FAT), disk drivesperating
systems, data compression [4] etc. A good caching
algorithm can cache frequently used data blockthen
buffer pool efficiently and provide faster acceesdata
and further improve the throughput and reduce the
response time [5].

Various read caching algorithms have been proposed
last few decades for example, LRU [6], LRFU [7]dan
LFU [8]. Most of the work in these algorithms has
focused on the single layer of cache that sepathies
producer and consumer of the data. As the sizadieis
very small, it is difficult to keep all the dataqréred by
the application into the single level cache. A majo
problem with these approaches is that it fails ddrass
the problems: when the access pattern of the wadklo
changes, the cache policy doesn’t adaptively adjugte
same time [9]. So the solution is handling dynamic
change in the cache replacement in response tgekam
the access pattern [10]. So it is essential tomskiple
layers of cache for better cache performance. Ad t
necessary data is available into the cache. Thet mos
recently used data is kept in first level and tkast
recently used data is kept at last level. In realet
systems, data travels through multiple cache layefsre
reaching to an application. It seemed that theoperdnce

of single-level cache replacement policy is veryopo
when used in multilevel caches. Thus multilayerheac
management policies like PROMOTE [11][12] and

Page| 1001

International Journal of Advanced Engineering, Management and Science (IJAEMS)

Infogain Publication (Infogainpublication.com)

[Vol-2, Issue-7, July- 2016]
ISSN : 2454-1311

DEMOTE, LRU-K [13] have been proposed. Hints [14]
are used to identify and manage the data in ment@l|
cache. Hints give the latest history of the blonkthe
cache. According to the necessity, cache blocks are
promoted from lower level to upper level or demoted
form upper level to lower level on the basis ofthin

Based on different roles in a multilevel cache,t$in
can be classified into three categories:
eDemote hints: There are the flags used to show the
promoted data from the upper level. Demote hintiireg
only few bits of memory.
e Promote hints: These are the flags used to show the
cache hit data which is promoted from the lowerelev
cache.
* Application hints: These are the flags used to show the
data information in different applications. Applica
hints may be static or dynamic and well definedebdasn
experienced functions in various access patterns.
There is a problem in using hints in correctly itifgmg
most important or less important data, and thermldyi
promoting more important data to the upper leveds)
demoting less important data to the lower leveélfg®se
hints provide just a block’s latest hint informatiat last
level, but lack some important hint history, whigflects
a block’s past movement among various cache levels.
Another problem is giving a unified management on
demote and promote hints. These hints are managed
separately which may bring an incomplete view atata
and an additional management cost.
In this paper, a new cache block replacement pabcy
proposed for multilevel cache memory. It constisutiee
feature of the two policies: PROMOTE [11] and
DEMOTE. The simulation results are analysed for
performance analysis of this policy by hit ratiodan
average response time. In the remaining part, desngl
algorithms of proposed policy in section Il. In Seuc |1,
the simulation results are analysed against egistin
multilevel cache policies. Section IV concludes plager.

Il. DESIGN AND MODELLING OF
INTERCROSS

The main purpose of this design is to improve therall
cache performance from the application point ofwhey
putting more active data closer to the applicatidich is
the upper level of cache hierarchy. To achieve this
objective, a multilevel cache management policy is
implemented that makes the decision whether to ptem
a data block or demote a data block based on N-step
history information known as hints as well as sarel
recency of the block in the cache. This policy ues
concept of compressed caching [12]. The data iedtim

Wwww.ijaems.com

the cache memory in compressed form therefore more
data can be stored than the single level cache [4].

It combines two existing policies: DEMOTE /PROMOTE
[11]. The replacement decision is based on hintssize
and recency based insertion. In this paper, thesfas
more general on demote and promote hints to carry
additional information of data blocks from the uppe
level(s) or the lower level(s) [16] .It is assumnibét the
cache memory has number of cache levels. The §ibe o
cache level goes on increasing. The cache levebnéa
processor is smallest in size; the second levéariger
than first one and so on up to last level. The lemmbwith
compressed cache is fixed sized cache block. If the
particular data is to be stored in cache whichdsirg
small size than cache block, then the remaining angm
space is consumed by that block cannot be usedhay o
application. Therefore cache block [17] in thisipglis
having variable size.

The selection of the cache block to be replacet e
main memory block is done by considering various
factors like number of promotion and demotion, Side
the block, and recency of the block in the cachenorg
[14]. Inter-cross policy uses the combination ofotw
existing cache management policy: PROMOTE and
DEMOTE for detecting the number of promotions and
demotions of the block [15]. Usually, promotionse ar
more preferred than demotion of the block. Two sypé
hints [7] are used here: demote and promote hihts.
focuses on demote hints to carry additional infaromaof
data blocks from the upper level(s) and promotéshio
carry additional information of data blocks frone tiower
level(s).

It is difficult to select a victim by consideringze and the
recency factor of the block to be replaced [14]efEhare
four types of blocks while considering these twectdas.

1) Small in size and less resident time
2) Small in size and more resident time
3) Large in size and less resident time
4) Large in size and more resident time

It is obvious that type 3 class blocks should baaeed
from the cache and type 2 class blocks should peike
cache. The replacement decision on other two types
complex. However, type 1 class blocks can be mahage
by considering size as an important factor but the
difficulty is with type 4 class blocks. They havarder
size and more recency value. Large amount of memory
space is consumed by such blocks which can befosed
other application.

There is another problem in deciding whether thekblis
small or large. The selection of the threshold &althich

Page| 1002

International Journal of Advanced Engineering, Management and Science (IJAEMS)

Infogain Publication (Infogainpublication.com)

[Vol-2, Issue-7, July- 2016]

decides the small or large block is essential. Gelg

large threshold value means re-reference rate vengi

more weight than the size information, whereaswveeto
threshold value means size information is given enor
weight than the re-reference rate [15]. If the ealf
threshold is decided on the basic of performance of
particular application, it is not easy to implemehts
solution in real systems, because this thresholdeva
varies with every application. In other words, #rpicular
threshold value is best for an application thenaih be
worst for another application.

A. Inter-cross Modeling

As shown in Figure 1, N-step hint for a random data

block, the latest hint is®Istep hint while the oldest hint is

N"step hint. An N-step hint is a sequence which cissi

of 1% step, 2° step, & step, and N step hints. An Inter-

cross technique is proposed in this paper to stiee
problem of detecting most active and less activehea
block which is solved by using multiple step higtint
information. It compares the activeness of datahsddn

any cache level and perform unified management on

demote and promote hints.

* This cache model consists of N levels L1, L2...Ln.
For a random cache level Li, demote hints (denoted
by Di, 2< | < N+1) are from the next upper level
Li-1 to the current level Li while (Pig | < N)
delegates promote hints from the next lower level
Li+1 to the current level. In this design, eachdslo
can be promoted or demoted by one level in a single
transaction [1]. Therefore, initially the more
important data blocks placed in a higher cachelleve
This approach focuses on read I/O requests and
writes requests can be handled by other separate
hints. To record the movements of active data [dock
among various cache levels step hint value (SHV)
are used.

* N-step Hint Values (NHVs) are used to identify the
status of a data block. Based on the all NHV's of
any cache level, demotion or promotion policied wil
be applied when the NHV of a data block is small or
large.

« If the block is demoted from upper level cache then
its step hint value (SHV) is set to 1 and if proatbt
to upper level cache then its SHV is set to 0 inNH

Wwww.ijaems.com

ISSN : 2454-1311
Leve[l Listep g step Kth step
hint pone hint
LevelZ
-ﬂﬂﬂﬂﬂ
K- step hint
1
D=1p=0
_ HEE SRR
Di+ \
1 K step hintvalue
Dn | TPn-l (KHV)
Dn+l |Pn
Stor age Devices
Fig. 1:N-step Hint.
R) .. .
NHV = E_,:, SHV(n)........ (13

The promotion condition of the block depends upon
activeness if the block. It is determined by cadting its
N-step hint value (NHV).The NHV is the sum of a8

at a particular level. The block having maximum Ni$V
more active and selected for promotion and thekakath
minimum NHYV is less active and selected for denrotio
Equation 1 can easily identify the most active kiom a
random levelL for promotion and the least active blocks
for demotion by checking the NHVs.

B. Intercross Algorithm

For each level in this multilevel cache design, tdps
hints are added into single level cache algorithwisch
can be any existing cache algorithms. For testurggse,
Hint-N [1] algorithms are used to describe theriatgion
among cache levels while using LRU [17] to chanante

a block within a specific level. Hint-N algorithrmere
developed, which have the following process on N&{V’
and two policies to decide whether a data bloclukhbe
demoted or promoted. Here, the Least Recently Used
policy is used to select a victim LRU list for detioo if
required.

This policy constitutes three algorithms:

A. Initialization

B. Promotion

C. Demotion

e Initialization and Update of NHVs

The following rules are used to initialize and ugda

NHVs in the Hint-N algorithms as shown in Algorithm

1) Initially all the levels of the cache are empty, XH
will be set to 0.

Page| 1003

International Journal of Advanced Engineering, Management and Science (IJAEMS)

Infogain Publication (Infogainpublication.com)

[Vol-2, Issue-7, July- 2016]
ISSN : 2454-1311

2) If the block is not present in cache then put <o
NHV’s to NULL.

3) If the block is in cache memory, then update its
NHV according to its latest hint information.

e Promotion Policy

When a data block in;lbecomes more active than the

least active block inily, it should be promoted. If there is

a read request to a block which is not preserténupper

level cache then:

1) Calculate minimum NHV (NHV min (i)) for the
level (Li) and send this value to next lower level
cache (k).

2) In the next lower level cache, check whether the
block is present or not otherwise repeat step 1.

3) If the block is present then check whether it fiats
the promotion condition:

NHV(block) = T0_, NHV(n) for all cache blocks

If YES:

a) If there is space in upper level cache, promote the
block to upper level and update its NHV.

b) If upper level cache is full then Replace this kloc
with the block which have largest size and lowest
locality of reference and which is present at the
bottom of LRU [19] list and update NHV of both the
blocks

If NO, go to step 1.

4) Else fetch the block from main memory [6]. In this
way, promotion takes place.

» Demotion Policy

If there is read request to a block from processut is

need to replace a block in upper level with theunegl

block, then the demote algorithm works.

1) Calculate minimum NHV (NHV min) for that level.

2) Check how many blocks having their NHV equal to
minimum NHV.

3) Among these blocks, select a block which is at the
bottom of LRU list.

4) Check whether the block belongs to which type

a) If the block belongs to typg go to stefe.

b) If the block belongs to typ®, go to stefb.

c) If the block belongs to typ2, go to stepe.

d) If the block belongs to typé, check the block for
threshold. If the block is smaller than threshold
value, go to step e

e) Select the block which is above the previous block
in LRU list. Go to step 4.

5) Replace the requisite block with the current blaoki
update NHV'’s of both the blocks.

Wwww.ijaems.com

Level i |

KHVmin

Ifblock is
present

Promotion
condition

nough Spacein
the upperlevel
cache

Replace the current block
with type 4 elass block

Promote the block to upper
level and updateits KHV

Exit

Fig.2: Flow of Promotion Policy

KHVmin of level i

Select no. of blocks having
KHV <KHVmin

Select the blocls present
it the bottom of LR list

5
Ed

Ifthe block

izeof block Replace the block snd

sn&llrlﬁmn/ A ipdsteits KHV
YES
i
Select the blocks present
just shave the previously
selected block EXIT

Fig.3:Flow of Demotion Policy
In this way, this inter-cross algorithm gives bettache
performance than other cache management policy. [20]
The above algorithm can be simulated on cache atoml

Page| 1004

International Journal of Advanced Engineering, Management and Science (IJAEMS)

Infogain Publication (Infogainpublication.com)

[Vol-2, Issue-7, July- 2016]
ISSN : 2454-1311

to see the performance. It shows better hit réizm tother
policies.

M. SIMULATION RESULTS AND ANALYSIS

To verify the effectiveness of Inter-cross polidyace

driven simulation are used to evaluate the Intessr

algorithms and compare them with three popular

multilevel cache like FIFO [21], LRU-K [22], DEMOTE

[11], PROMOTE [20] under different workloads as

shown in Figure 3.

A. Simulation Methodology

The new .net based simulator is developed,

hybridcachesimWithin each cache level, LRU policy is

used. The experiment results show the % hit rdtithe

Inter-cross against existing multilevel cache pelcFour

different traces are used in this simulation aswshin

Figure 4:

1) Load of 1000 instruction, each having maximum
frequency of 20 occurrences.

2) Load of 1500 instruction, each having maximum
frequency of 15 occurrences.

Hybrid Cache Mangement Policy
Performance

p ”
80 I

70 >

0 Wad

50 Pad

% Hit Ratio

0 7

10
0 T T T T T T T 1

== Load=1000 Instruction

2 O HHHLHDHD
FEFHFLLELES K
Cache size(no. of level *no. of of block per level*no. of pages per block)

Hybrid Cache Mangement Policy
Performance

100
80

80 '
70 é
60 -

50

30 A

pli] - ——Load=1500 Instruction
1

% Hit Ratio

FOPPIL PP S
FEFSSELL S

Cache size(no. of level *no. of of block per level*no. of pages per block)

Fig.4:Performance of Inter-cross policy under
different workload

www.ijaems.com

Inter-cross approach is concerned with the apjpdinat
which have many blocks active among different cache
levels, so the system is set to warm-up in hybdteaim
so that the enough data blocks have been flooded to
cache levels [19]. Unless stated, the defaultrpatears
used are: two cache levels £ 3), number of blocks per
levels (10), and block size (Sb& KB). The aggregate
cache size is the product of all cache level, nundie
blocks per level, and block size. Write requests ar
ignored in this simulation. Based on the defauitirsgs of
hybridcachesimthe average access times of cache and
disk are 0.25ms and 10ms, respectively.
B. Resultsand Analysis
1) Number of Demote/Promote operations
Experimental results shows that the number of
promote/demote operations decreases with increased
cache size because the possibility of replacemérd o
block is decreased when the cache becomes larger. T
number of operations also decreases with increbleed
size when the number of blocks is reduced. It seobed
that Inter-cross reduces up to 15% of Demote/Premot
operations compared to the PROMOTE [20][5]
algorithm. This prevents unnecessary movement diea
blocks among different cache levels by keepingda&
at the most appropriate level.
2) Aggregate hit ratio of different multilevel cach
policies
Next, the aggregate hit ratios of different multdecache
management policies are calculated.
% Hit Ratio = (No.of Cache hi3otal no.of request)
+*100... (3)
% Miss Ratio = (No.of Cache misiotal no.of request)
%100 ... (4)

Cache Performance with Increasing Cache
Size

HFIFO
% Hit Ratio BLRUK
PROMOTE

BDEMOTE

FHYBRID

156 5l

1024 2048 4096

Cache size(no of levels*hlocks per level)

Page| 1005

International Journal of Advanced Engineering, Management and Science (IJAEMS)

[Vol-2, Issue-7, July- 2016]

Infogain Publication (Infogainpublication.com) ISSN : 2454-1311
. . 2048 | 60.7 90.52 90.64 92.64
Cache Performance with Increasing 0
. 4096 | 64.6 96.12 96.32 98.75
Cache Size 3

HFIFD

W Mlez Ratlo BLALE

| PROMOT
ROEMOTE
RHVIRE

Fig.5: Comparison of performance of Inter-Crossippl
with different multilevel
The results are shown in Table I. PROMOTE and
DEMOTE [1] policies gives same hit ratio. It is epged
that if number of cache levels going on increasiig,
aggregate hit ratio increase. Up to four levels<(¥), the
performance benefit is more as compared to cache
overhead problems like cache coherence. But dfter t
number of levels reaches to five, the aggregateahivn
remains constant and there is increase in the eadrin
maintaining the large cache as shown in the Fidure
From these results, Inter-cross achieves highereggte
hit ratio than existing multilevel cache policy.
3) Average response time of different multilevethea
policies
The average response time and average hit ratioudf
level cache replacement policy is higher than thiose
single level. It is a simple and efficient approaathandle
demotes and promotes hints. When more hint infaomat
is used, a better decision can be made whethesrtmig
or promote a block. When the number of cache img®a
above four the access overhead of cache tableaisese
and the performance degrades.

TABLE Il POLICIES COMPARISON ON THE
BASIS OF DIFFERENT WORKLOAD

Cache % Hit ratio
S'Ee(K" LRU | PROMOT | DEMOT | INTERCROS
obytes)| E E S
256 | 32.8 | 49.45 49.60 50.80
3
512 | 42.4| 63.25 63.46 65.79
7
1024 | 53.6 | 81.45 81.46 86.19
5

www.ijaems.com

IV. CONCLUSION
In this paper Inter-cross multilevel cache managégme
policy is implemented, to keep track of last N-shégtory
information about the movement of a data block agnon
multiple cache levels. The activeness of a block is
determined by the frequency of the demote/promote
operations of a block, size and resident time eflitock
at the particular cache level. Inter-cross promaietsve
data to the upper cache level while demotes paskitee
to the lower level more efficiently. An Inter-crossodel
is developed to easily identify the activeness lotcks.
The results show that Inter-cross achieves better
performance compared to FIFO, LRU-K DEMOTES and
PROMOTE algorithms under different I1/O workloads.

REFERENCES

[1] Chentao Wu, Xubin He, Qiang Cao, Changsheng
Xie, and Shenggang Wan.” Crossbreed: An Efficient
Multilevel Cache Using N-step Hints,”IEEE
Transactions on Parallel and Distributed Systems,
Mar 2013.

[2] U. Shrawankar and R. Gupta, “Block Pattern Based
Buffer Cache Management.”In 8th International
Conference on Computer Science & Education
(ICCSE 2013.

[3] B. Gill, M. Ko, B. Debnath, and W. Belluomini,
“STOW: A spatially and temporally optimized write
caching algorithm.” In Proc. of the 2009 USENIX
Annual Technical Conf., San Diego, CA, June 2009.

[4] Yadgar, M. Factor, and A. Schuster, Karma: “Know-
it-all replacement for a multilevel cache.” In Pro¢
the 5th USENIX Conf. on File and Storage
Technologies, San Jose, CA, February 2007.

[5] Lampson, “Hints for Computer System Design,”
Proc. Ninth ACM Symp. Operating System
Principles, Oct. 1983

[6] R. Patterson, G. Gibson, E. Ginting, D. Stodolsky,
and J. Zelenka, “Informed Prefetching and
Caching,” Proc. 15th ACM Symp Operating System
Principles, Dec. 1995.

[7]1 B. Gill. “Systems and methods for multi-level
exclusive caching using hints”. US Patent No.
7761664 B2, July 2010.

[8] B. Gill, “On multi-level exclusive caching: Offline
optimality and why promotions are better than
demotions”. In Proc. of the6th USENIX Conf. on

Page| 1006

International Journal of Advanced Engineering, Management and Science (IJAEMS)

Infogain Publication (Infogainpublication.com)

[Vol-2, Issue-7, July- 2016]
ISSN : 2454-1311

File and Storage San Jose,

CA,February 2008.

Technologies,

[9] Yadgar, M. Factor, K. Li, and A. Schuster,
“Management of multilevel, multiclient cache
hierarchies with application hints.”ACM

Transactions on Computer Systems, 29(2): Article 5,
2011.

[10]Y. Zhu and H. Jiang, RACE: “A robust adaptive
caching strategy for buffer cache. IEEE Transastion
on Computers, 57(1):25-40, 2007.

[11]k, Chikhale,U.Shrwankar,“Hybridmulti-level cache
management policy”, IEEE conference on
communication systems and network topologies,
978-1-4799-3070, march 2014.

[12]Bairavasundaram, M. Sivathanu, A. Arpaci-
Dusseau, and R.Arpaci-Dusseau, “X-RAY: A Non-
Invasive Exclusive Caching Mechanism for
RAIDs,” Proc. 31th Ann. Int'l Symp. Computer
Architecture, June 2004.

[13]Wu, X. He, Q. Cao, and C. Xie, “Hint-K: An
Efficient Multi-Level Cache Using K-Step Hints,”
Proc. 39th Int'l Conf. Parallel Processing, Sept.
2010.

[14]1G. Yadgar, M. Factor, K. Li, and A. Schuster,
“Management of Multilevel, Multiclient Cache
Hierarchies with Application Hints,” ACM Trans.
Computer Systems, vol. 29, no. 2, Article 5,2011.

[15]G. Yadgar, M. Factor, and A. Schuster, “Karma:
Know-it-All Replacement for a Multilevel Cache,”
Proc. Fifth USENIX Conf. File and Storage
Technologies, Feb. 2007.

[16]Zhou, B. Behren, and E. Brewer, “AMP: Program
Context Specific Buffer Caching,” Proc. USENIX
Ann. Technical Conf., Apr. 2005.

[17]Y. Zhou, Z. Chen, and K. Li, “Second-Level Buffer
Cache Management,” IEEE Trans. Parallel and
Distributed Systems, vol. 15, no. 6, pp. 505-519,
June 2004.

[18]S. Jiang and X. Zhang, “LIRS: An Efficient Low
Inter-Reference Recency Set Replacement Policy to
Improve Buffer Cache Performance,” Proc. ACM
SIGMETRICS Int'l Conf. Measurement and
Modeling of Computer Systems, June 2002.

[19]S. Jiang and X. Zhang, “ULC: A File Block
Placement and Replacement Protocol to Effectively
Exploit Hierarchical Locality in Multi-Level Buffer
Caches,” Proc. 24th Intl Conf. Distributed
Computing Systems, Mar. 2004.

[20]J. Robinson and M. Devarakonda, “Data Cache
Management Using Frequency-Based
Replacement,” Proc. ACM SIGMETRICS Conf.

Wwww.ijaems.com

Measurement and Modeling of Computer Systems,
May 1990.

[21]T. Johnson and D. Shasha, “2Q: A Low Overhead

[22]

High Performance Buffer Management Replacement
Algorithm,” Proc. 20th Intl Conf. Very Large
Databases, Sept. 1994.
D. Lee, J. Choi, J. Kim, S. Noh, S. Min, Y. Cho,
and C. Kim, “LRFU: A Spectrum Of Policies That
Subsumes the Least Recently Used and Least
Frequently Used Polices,” IEEE Trans. Computers,
vol. 50, no. 12, pp. 1352-1361, Dec. 2001.

Page| 1007

